Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116191

ABSTRACT

Infectious Bronchitis (IB) is a respiratory disease caused by a highly variable Gammacoronavirus, which generates a negative impact on poultry health worldwide. GI-11 and GI-16 lineages have been identified in South America based on Infectious Bronchitis virus (IBV) partial S1 sequences. However, full genome sequence information is limited. In this study we report, for the first time, the whole-genome sequence of IBV from Colombia. Seven IBV isolates obtained during 2012 and 2013 from farms with respiratory disease compatible with IB were selected and the complete genome sequence was obtained by NGS. According to S1 sequence phylogenetic analysis, six isolates belong to lineage GI-1 and one to lineage GVI-1. When whole genome was analyzed, five isolates were related to the vaccine strain Ma5 2016 and two showed mosaic genomes. Results from complete S1 sequence analysis provides further support for the hypothesis that GVI-1, considered a geographically confined lineage in Asia, could have originated in Colombia. Complete genome information reported in this research allow a deeper understanding of the phylogenetic evolution of variants and the recombination events between strains that are circulating worldwide, contributing to the knowledge of coronavirus in Latin America and the world.


Subject(s)
Infectious bronchitis virus , Poultry Diseases , Animals , Phylogeny , Colombia/epidemiology , Poultry Diseases/prevention & control , Chickens , Genome, Viral
2.
Viruses ; 13(9)2021 09 10.
Article in English | MEDLINE | ID: covidwho-1411087

ABSTRACT

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/transmission , Genome, Viral , Humans , Mutation , Phylogeography , Retrospective Studies , SARS-CoV-2/pathogenicity , Uruguay
3.
Front Microbiol ; 12: 653986, 2021.
Article in English | MEDLINE | ID: covidwho-1268262

ABSTRACT

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

4.
Front Microbiol ; 11: 615280, 2020.
Article in English | MEDLINE | ID: covidwho-1120950

ABSTRACT

A previous study demonstrates that most of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Brazilian strains fell in three local clades that were introduced from Europe around late February 2020. Here we investigated in more detail the origin of the major and most widely disseminated SARS-CoV-2 Brazilian lineage B.1.1.33. We recovered 190 whole viral genomes collected from 13 Brazilian states from February 29 to April 31, 2020 and combined them with other B.1.1 genomes collected globally. Our genomic survey confirms that lineage B.1.1.33 is responsible for a variable fraction of the community viral transmissions in Brazilian states, ranging from 2% of all SARS-CoV-2 genomes from Pernambuco to 80% of those from Rio de Janeiro. We detected a moderate prevalence (5-18%) of lineage B.1.1.33 in some South American countries and a very low prevalence (<1%) in North America, Europe, and Oceania. Our study reveals that lineage B.1.1.33 evolved from an ancestral clade, here designated B.1.1.33-like, that carries one of the two B.1.1.33 synapomorphic mutations. The B.1.1.33-like lineage may have been introduced from Europe or arose in Brazil in early February 2020 and a few weeks later gave origin to the lineage B.1.1.33. These SARS-CoV-2 lineages probably circulated during February 2020 and reached all Brazilian regions and multiple countries around the world by mid-March, before the implementation of air travel restrictions in Brazil. Our phylodynamic analysis also indicates that public health interventions were partially effective to control the expansion of lineage B.1.1.33 in Rio de Janeiro because its median effective reproductive number (R e ) was drastically reduced by about 66% during March 2020, but failed to bring it to below one. Continuous genomic surveillance of lineage B.1.1.33 might provide valuable information about epidemic dynamics and the effectiveness of public health interventions in some Brazilian states.

5.
Mem. Inst. Oswaldo Cruz ; 115:e200183-e200183, 2020.
Article in English | LILACS (Americas) | ID: grc-742303

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world during 2020, but the precise time in which the virus began to spread locally is difficult to trace for most countries. Here, we estimate the probable onset date of the community spread of SARS-CoV-2 for heavily affected countries from Western Europe and the Americas on the basis of the cumulative number of deaths reported during the early stage of the epidemic. Our results support that SARS-CoV-2 probably started to spread locally in all western countries analysed between mid-January and mid-February 2020, thus long before community transmission was officially recognised and control measures were implemented.

6.
Mem Inst Oswaldo Cruz ; 115: e200183, 2020.
Article in English | MEDLINE | ID: covidwho-750955

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world during 2020, but the precise time in which the virus began to spread locally is difficult to trace for most countries. Here, we estimate the probable onset date of the community spread of SARS-CoV-2 for heavily affected countries from Western Europe and the Americas on the basis of the cumulative number of deaths reported during the early stage of the epidemic. Our results support that SARS-CoV-2 probably started to spread locally in all western countries analysed between mid-January and mid-February 2020, thus long before community transmission was officially recognised and control measures were implemented.


Subject(s)
Community-Acquired Infections/epidemiology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Americas/epidemiology , Betacoronavirus , COVID-19 , Community-Acquired Infections/transmission , Community-Acquired Infections/virology , Coronavirus Infections/transmission , Europe/epidemiology , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL